Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Epidemics ; 41: 100641, 2022 Oct 06.
Article in English | MEDLINE | ID: covidwho-2311254

ABSTRACT

The Covid-19 pandemic has highlighted the value of strong surveillance systems in supporting our abilities to respond rapidly and effectively in mitigating the impacts of infectious diseases. A cornerstone of such systems is basic subnational scale data on populations and their demographics, which enable the scale of outbreaks to be assessed, risk to specific groups to be determined and appropriate interventions to be designed. Ongoing weaknesses and gaps in such data have however been highlighted by the pandemic. These can include outdated or inaccurate census data and a lack of administrative and registry systems to update numbers, particularly in low and middle income settings. Efforts to design and implement globally consistent geospatial modelling methods for the production of small area demographic data that can be flexibly integrated into health-focussed surveillance and information systems have been made, but these often remain based on outdated population data or uncertain projections. In recent years, efforts have been made to capitalise on advances in computing power, satellite imagery and new forms of digital data to construct methods for estimating small area population distributions across national and regional scales in the absence of full enumeration. These are starting to be used to complement more traditional data collection approaches, especially in the delivery of health interventions, but barriers remain to their widespread adoption and use in disease surveillance and response. Here an overview of these approaches is presented, together with discussion of future directions and needs.

2.
Epidemics ; 40: 100597, 2022 09.
Article in English | MEDLINE | ID: covidwho-1895032

ABSTRACT

The Covid-19 pandemic has highlighted the value of strong surveillance systems in supporting our abilities to respond rapidly and effectively in mitigating the impacts of infectious diseases. A cornerstone of such systems is basic subnational scale data on populations and their demographics, which enable the scale of outbreaks to be assessed, risk to specific groups to be determined and appropriate interventions to be designed. Ongoing weaknesses and gaps in such data have however been highlighted by the pandemic. These can include outdated or inaccurate census data and a lack of administrative and registry systems to update numbers, particularly in low and middle income settings. Efforts to design and implement globally consistent geospatial modelling methods for the production of small area demographic data that can be flexibly integrated into health-focussed surveillance and information systems have been made, but these often remain based on outdated population data or uncertain projections. In recent years, efforts have been made to capitalise on advances in computing power, satellite imagery and new forms of digital data to construct methods for estimating small area population distributions across national and regional scales in the absence of full enumeration. These are starting to be used to complement more traditional data collection approaches, especially in the delivery of health interventions, but barriers remain to their widespread adoption and use in disease surveillance and response. Here an overview of these approaches is presented, together with discussion of future directions and needs.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Data Collection , Disease Outbreaks , Humans , Population Surveillance/methods
3.
Science ; 369(6510):1465-1470, 2020.
Article in English | EMBASE | ID: covidwho-1177508

ABSTRACT

As rates of new coronavirus disease 2019 (COVID-19) cases decline across Europe owing to nonpharmaceutical interventions such as social distancing policies and lockdown measures, countries require guidance on how to ease restrictions while minimizing the risk of resurgent outbreaks. We use mobility and case data to quantify how coordinated exit strategies could delay continental resurgence and limit community transmission of COVID-19. We find that a resurgent continental epidemic could occur as many as 5 weeks earlier when well-connected countries with stringent existing interventions end their interventions prematurely. Further, we find that appropriate coordination can greatly improve the likelihood of eliminating community transmission throughout Europe. In particular, synchronizing intermittent lockdowns across Europe means that half as many lockdown periods would be required to end continent-wide community transmission.

4.
BMC Med ; 19(1): 2, 2021 01 05.
Article in English | MEDLINE | ID: covidwho-1007167

ABSTRACT

BACKGROUND: Through a combination of strong routine immunization (RI), strategic supplemental immunization activities (SIA) and robust surveillance, numerous countries have been able to approach or achieve measles elimination. The fragility of these achievements has been shown, however, by the resurgence of measles since 2016. We describe trends in routine measles vaccine coverage at national and district level, SIA performance and demographic changes in the three regions with the highest measles burden. FINDINGS: WHO-UNICEF estimates of immunization coverage show that global coverage of the first dose of measles vaccine has stabilized at 85% from 2015 to 19. In 2000, 17 countries in the WHO African and Eastern Mediterranean regions had measles vaccine coverage below 50%, and although all increased coverage by 2019, at a median of 60%, it remained far below levels needed for elimination. Geospatial estimates show many low coverage districts across Africa and much of the Eastern Mediterranean and southeast Asian regions. A large proportion of children unvaccinated for MCV live in conflict-affected areas with remote rural areas and some urban areas also at risk. Countries with low RI coverage use SIAs frequently, yet the ideal timing and target age range for SIAs vary within countries, and the impact of SIAs has often been mitigated by delays or disruptions. SIAs have not been sufficient to achieve or sustain measles elimination in the countries with weakest routine systems. Demographic changes also affect measles transmission, and their variation between and within countries should be incorporated into strategic planning. CONCLUSIONS: Rebuilding services after the COVID-19 pandemic provides a need and an opportunity to increase community engagement in planning and monitoring services. A broader suite of interventions is needed beyond SIAs. Improved methods for tracking coverage at the individual and community level are needed together with enhanced surveillance. Decision-making needs to be decentralized to develop locally-driven, sustainable strategies for measles control and elimination.


Subject(s)
Disease Eradication , Immunization Programs , Immunization, Secondary , Measles , Regional Health Planning/organization & administration , Vaccination Coverage/trends , Africa/epidemiology , Asia, Southeastern/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Child , Disease Eradication/methods , Disease Eradication/statistics & numerical data , Humans , Immunization Programs/methods , Immunization Programs/organization & administration , Immunization, Secondary/methods , Immunization, Secondary/statistics & numerical data , Measles/epidemiology , Measles/prevention & control , Measles Vaccine/therapeutic use , Mediterranean Region/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL